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This paper presents the formulation of an uncertainty quantification chal-
lenge problem consisting of five subproblems. These problems focus on
key aspects of uncertainty characterization, sensitivity analysis, uncertainty
propagation, extreme-case analysis, and robust design.

I. Introduction

This article poses a few challenges on uncertainty quantification and robust design us-
ing a “black box” formulation. While the formulation is indeed discipline-independent, the
underlying model, as well as the requirements imposed upon it, describes a realistic aeronau-
tics application. A few high-level details of this application are provided at the end of this
document. Parties interested in working on this challenge problem should inform us of their
intent via http://uqtools.larc.nasa.gov/contact-us/. Respondents are expected to present a
paper in a dedicated session of the 16th AIAA Non-Deterministic Approaches Conference,
to be held in January 13-17, 2014 at National Harbor, Maryland, USA. Additional details
on the conference are available at www.aiaa.org/scitech2014.aspx. Besides the presentation,
each group must write a full conference paper following the standards and deadlines of the
AIAA SciTech 2014 conference. An extended abstract of the work plan must be submitted
to the AIAA by June 5th 2013. Please identify the title of the special session, NASA
Langley Multidisciplinary Uncertainty Quantification Challenge, on the article and inform
us of all submissions. The final paper should not only include the final results,
but more importantly, the assumptions and justifications supporting both the
methods used and the methods tried but discarded, remarks on computational
complexity, conservatism, and the overall lessons learned. Selected papers will be
compiled in a special edition of the AIAA Journal of Aerospace Computing, Information and
Communication, and presented in a workshop at Langley.
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II. Uncertainty Models

This challenge problem will adopt the generally accepted classifications of uncertainty
referred to as aleatory and epistemic [1, 2]. Aleatory uncertainty (also called irreducible
uncertainty, stochastic uncertainty, or variability) is uncertainty due to inherent variation
or randomness. Epistemic uncertainty is uncertainty that arises due to a lack of knowledge.
Epistemic uncertainty is not an inherent property of the system, but instead it represents
the state of knowledge of the parameter and as such it may be reduced if more information
is acquired.

According to its physical origin and the system’s operating conditions, the value of a pa-
rameter can be either fixed (e.g., the mass of a specific element produced by a manufacturing
process) or varying (e.g., the mass of any element that can be produced by a manufacturing
process). The physical origin of a parameter as well as the knowledge we have about it
must be used to create uncertainty models for it. Intervals, fuzzy sets, random variables,
probability boxes [3], a.k.a. p-boxes, etc., are different classes of uncertainty models.

While a parameter may be known to be aleatory, sufficient data may not be available to
adequately model it as a single random variable. In this case, an approach is to use a random
variable with a fixed functional form, e.g. a normal variable but the specific parameters
required to fully prescribe it, e.g., the mean and standard deviation, are unknown constants
assumed to lie in some given bounded intervals. This results in a distributional p-box, where
the physical parameter is indeed an aleatory uncertainty but the parameters prescribing its
mathematical model are epistemic uncertainties. A distributional p-box prescribes all the
elements of a family of random variables. Conversely, a free p-box is defined by prescribed
upper and lower bounding cumulative distribution functions and admits any random variable
whose cumulative distribution function falls between these bounding functions.

The above considerations lead us to classify each uncertain parameter of the challenge
problem as belonging to one the following three categories:

I) An aleatory uncertainty modeled as a random variable with a fixed functional form
and known coefficients. This mathematical model is irreducible.

II) An epistemic uncertainty modeled as a fixed but unknown constant that lies within a
given interval. This interval is reducible.

III) An aleatory uncertainty modeled as a distributional p-box. Each of the parameters
prescribing the random variable is an unknown element of a given interval. These
intervals are reducible.

Note that the there is no epistemic space associated with a category I parameter since its
uncertainty model is fully prescribed. The epistemic space of a category II parameter, which
belongs to a family of infinitely many deterministic values, is an interval. The epistemic space
of a category III parameter, which belongs to a family of infinitely many probabilistic models,
is the Cartesian product of the intervals associated with all the epistemically uncertain
parameters of the random variable.

Since most models, especially those used to describe uncertainty, are imperfect; the
possibility of improving them always exists. Specifics on what we mean by an “improved”
or “reduced” uncertainty model are now in order. Improvements over any given uncertainty
model are attained when its epistemic space is reduced. This reduction can be attained by
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performing additional experiments or doing better computational simulations. For instance,
denote by M1 a distributional p-box with a Normal functional form, mean µ ∈ [a, b] and
standard deviation σ ∈ [c, d]. The uncertainty model M2 is an improvement over M1 if its
epistemic space e2 satisfies e2 ⊂ [a, b]× [c, d]. Conversely, an irreducible model remains fixed
throughout the uncertainty quantification process. We will declare an uncertainty model
irreducible when we either lack the ability or resources to improve it.

III. Problem Formulation

Let S denote the mathematical model of the multidisciplinary system under investiga-
tion. This model is used to evaluate the performance of a physical system and evaluate its
suitability. Denote by p a vector of parameters in the system model whose value is uncertain
and by d a vector of design variables whose value can be set by the analyst. Furthermore,
denote by g a set of requirement metrics used to evaluate the system’s performance. The
value of g depends on both p and d. The system will be regarded as requirement compliant if
it satisfies the set of inequalitya constraints g < 0. For a fixed value of the design variable d,
the set of p-points where g < 0 is called the safe domain, while its complement set is called
the failure domain. Therefore, the failure domain corresponding to a fixed design point is
comprised of all the parameter points p where at least one of the requirements is violated.

The relationship between the inputs p and d, and the output g is given by several
functions, each representing a different subsystem or discipline. The function prescribing
the output of the multidisciplinary system is given by

g = f(x,d), (1)

where x is a set of intermediate variables whose dependence on p is given by

x = h(p). (2)

The components of x, which can be interpreted as outputs of the fixed discipline analyses
in (2), are the inputs to the cross-discipline analyses in (1). The components of g and x are
continuous functions of the inputs that prescribe them.

Challenge Overview

In the following subproblems, initial uncertainty models for the uncertain parameters in
vector p, as well as software to evaluate Equations (1) and (2), are given (see section V
for software availability). We also provide some data, hereafter referred to as “experimental
data”, which functions as a surrogate for experimental results. An overview of the various
tasks of interest is as follows

• Improvement of the initial uncertainty models based on the experimental data.

• Decisions are to be made as to which uncertainty models should be improved such that
the spread in various quantities dependent on p is reduced the most.

aVector inequalities apply to all vector’s components.
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• Determination is to be made as to whether various quantities dependent on p are suf-
ficiently insensitive to the uncertainty in any given parameter such that the parameter
can be assumed to take on a fixed constant value.

• Determination of the range of selected statistics of variables that depend on p for 2
uncertainty models of p. The first uncertainty model has been improved based on the
experimental data. The second one is further improved by using reduced models of 4
parameters. The models of these 4 parameters, which are chosen by the respondent
according to his/her own analysis, will be provided by us. These further improved
models are based on further experimentation and observation of p.

• Identification of the particular uncertainty models that yield the extreme values of the
ranges mentioned above.

• Determination of design points that provide optimal worst-case probabilistic perfor-
mance in the presence of uncertainty (optional).

These tasks are at the core of the subproblems presented below. The subproblems,
namely uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-
case analysis and robust design, are presented in sections A, B, C, D, and E respectively.
While the subproblems A, B, C, and D pose analysis tasks for which the value of d is kept
fixed at d = dbaseline, subproblem E poses design tasks for which the value of d is to be
determined. Specifics on each the subproblems are provided next.

Subproblem A: Uncertainty Characterization

Here we consider a subsystem of S whose scalar output x1 depends on five uncertain
parametersb as given by

x1 = h1(p1,p2,p3,p4,p5). (3)

Specific information on these parameters is provided in Table 1. The first column provides
the parameter’s symbol, the second one its category (see above for a description of the
categories), and the third one describes its uncertainty modelc. While the symbol ∆ denotes
the support set or parameter range, ρ, E[·], V [·], and P [·] denote the correlation, expected
value, variance, and probability operators respectively. In this subproblem, the tasks of
interests are as follows:

A1) We provide software to evaluate h1 and n = 25 observations of x1 corresponding
to the “true uncertainty model”, i.e., a model where p1 is a fully prescribed Beta
random variable, p2 is a fixed constant and p4 and p5 are described by a single and
possibly correlated bivariate Normal. Use this information to improve the uncertainty
model of the category II and III parameters (refer to Section II for the definition of a
reduced/improved uncertainty model). The resulting models should only exclude the
elements of the original models that fail to explain the observations.

bThe components of vector quantities and vector functions will be specified as subscripts, e.g., the scalar
p1 is the first component of p while h1 is the first function of h.

cA random variable whose probability density function (PDF) has a single peak at the interior of the
support set will be called unimodal.
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Table 1. Uncertain parameters.

Symbol Category Uncertainty Model

p1 III Unimodal Beta, 3/5 ≤ E[p1] ≤ 4/5, 1/50 ≤ V [p1] ≤ 1/25

p2 II ∆ = [0, 1]

p3 I Uniform, ∆ = [0, 1]

p4, p5 III Normal, −5 ≤ E[pi] ≤ 5, 1/400 ≤ V [pi] ≤ 4, |ρ| ≤ 1 for i = 4, 5

A2) Use an additional n = 25 observations to validate the models found in A1.

A3) Improve the uncertainty models further by using all the 50 samples available.

A4) Account for the effect of the number of observations n on the fidelity of the resulting
uncertainty models. How much better is the model found in A3 as compared to the
model found in A1?

Subproblem B: Sensitivity Analysis

We now consider the multidisciplinary system S having the input p ∈ R21 and the output
g ∈ R8. The first 5 input parameters should be modeled using the results from task A3,
while the remaining 16 parameters are given in Table 2.

Table 2. Uncertain parameters.

Symbol Category Uncertainty Model

p6 II ∆ = [0, 1]

p7 III Beta, 0.982 ≤ a ≤ 3.537, 0.619 ≤ b ≤ 1.080

p8 III Beta, 7.450 ≤ a ≤ 14.093, 4.285 ≤ b ≤ 7.864

p9 I Uniform, ∆ = [0, 1]

p10 III Beta, 1.520 ≤ a ≤ 4.513, 1.536 ≤ b ≤ 4.750

p11 I Uniform, ∆ = [0, 1]

p12 II ∆ = [0, 1]

p13 III Beta, 0.412 ≤ a ≤ 0.737, 1.000 ≤ b ≤ 2.068

p14 III Beta, 0.931 ≤ a ≤ 2.169, 1.000 ≤ b ≤ 2.407

p15 III Beta, 5.435 ≤ a ≤ 7.095, 5.287 ≤ b ≤ 6.945

p16 II ∆ = [0, 1]

p17 III Beta, 1.060 ≤ a ≤ 1.662, 1.000 ≤ b ≤ 1.488

p18 III Beta, 1.000 ≤ a ≤ 4.266, 0.553 ≤ b ≤ 1.000

p19 I Uniform, ∆ = [0, 1]

p20 III Beta, 7.530 ≤ a ≤ 13.492, 4.711 ≤ b ≤ 8.148

p21 III Beta, 0.421 ≤ a ≤ 1.000, 7.772 ≤ b ≤ 29.621
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The relationship between the input p and the output g is given by Equations (1) and
(2), where the intermediate variable x ∈ R5 is given by (3) and

x2 = h2(p6,p7,p8,p9,p10), (4)

x3 = h3(p11,p12,p13,p14,p15), (5)

x4 = h4(p16,p17,p18,p19,p20), (6)

x5 = p21. (7)

Note that the propagation of the uncertainty model of p through h yields distributional
p-boxes for x1, x2, x3 and x4. If the uncertainty models of the category II and III parameters
are improved, so will be the resulting p-boxes of x1, x2, x3 and x4.

In this subproblem we want to perform the following tasks:

B1) Rank the 4 category II-III parameters entering Equation (3) according to degree of
refinement in the p-box of x1 which one could hope to obtain by refining their un-
certainty models. Are there any parameters that can be assumed to take on a fixed
constant value without incurring in significant error? If so, evaluate/bound this error,
list which parameters and set their corresponding constant values. Do the same for
the 4 category II-III parameters prescribing x2, x3 and x4.

B2) Rank the 17 category II-III parameters of Tables 1 and 2 according to the reduction
in the range of the expected value

J1 = E[w(p,dbaseline)], (8)

which one could hope to obtain by refining their uncertainty models. In this expression,

w(p,d) = max
1≤i≤8

gi = max
1≤i≤8

f i(h(p),d), (9)

is the worst-case requirement metric. Are there any parameters that can be assumed
to take on a fixed constant value without incurring in significant error? If so, eval-
uate/bound this error, list which parameters and set their corresponding constant
values.

B3) Rank the 17 category II-III parameters of Tables 1 and 2 according to the reduction
in the range of the failure probability:

J2 = 1− P [w(p,dbaseline) < 0] , (10)

which one could hope to obtain by refining their uncertainty modelsd. Are there any
parameters that can be assumed to take on a fixed constant value without incurring
significant error? If so, evaluate/bound this error, list which parameters and set their
corresponding constant values.

Compare the above rankings and eventual parameter simplifications. Note that while the
tasks in B1 are of interest to experts in the disciplines modelled by h, the tasks in B2 and

dNote that J2 is equal to P
[⋃8

i=1{p : f i(h(p),dbaseline) > 0}
]
.
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B3 are of interest to analysts of the integrated system. Further notice that each ranking can
be used to determine the key parameters whose uncertainty model we want to improve.

Subproblem C: Uncertainty Propagation

This subproblem aims at finding the range of the metrics J1 and J2 in Equations (8) and
(10) that results from propagating both the original uncertainty model and a reduced one.
The challengers will provide each respondent with a reduced uncertainty model in which 4
out of the 17 category II and III parameters of the respondent’s choice have been improved.
This is a practical limitation that may stem from having a limited amount of time or money
to generate better models. In particular, the tasks of interest are as follows:

C1) Find the range of J1 corresponding to an uncertainty model based on your response to
A3 and the information in Table 2.

C2) Find the range of J2 corresponding to an uncertainty model based on your response to
A3 and the information in Table 2.

C3) Select 4 category II-III parameters out of the 17 available according to the rankings
in B2 and B3, and request from us an improved uncertainty model for them. While
improved models for any four parameters will likely lead to smaller ranges of variation,
the set of 4 leading to the smallest ranges is ideal. Each working group may request
a reduced uncertainty model of 4 parameters of their choice. Only one set of reduced
parameters will be provided to each working group.

C4) Use the reduced uncertainty model to recalculate the ranges of J1 and J2.

A cautionary note on the approaches used to calculate the ranges of J1 and J2 is in
order. Methods to calculate these ranges may lead to underpredictions or overpredictions of
the actual range. Each of these two outcomes has its own drawbacks. An underprediction
(e.g., a situation where the search for the end points of the range fails to converge to a global
optima) can lead the decision maker to the wrong decision (e.g., the estimate of largest failure
probability is half of the actual value). An overprediction (e.g., a situation resulting from
replacing a distributional p-box with a free p-box) can not only lead the decision maker to
the wrong decision (e.g., the estimate of largest failure probability is twice the actual value)
but also prevent him/her from making any decision (e.g., the predicted range of failure
probabilities covers the entire [0, 1] interval).

Subproblem D: Extreme Case Analysis

This subproblem aims at identifying the epistemic realizations that prescribes the extreme
values of J1 and J2. In particular we want to

D1) Find the epistemic realizations of the category II and III parameters that yield the
smallest and the largest value of J1 for the original uncertainty model used in C1. Do
the same for the reduced uncertainty model used in C4.

D2) Find the epistemic realizations of the category II and III parameters that yield the
smallest and the largest value of J2 for the original uncertainty model used in C2. Do
the same for the reduced uncertainty model used in C4.
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D3) Identify a few representative realizations of x leading to J2 > 0. These realizations
should typify different failure scenarios. Describe the corresponding relationships be-
tween x and g qualitatively, e.g., the combination of small values of x1 and large values
of x2 yields to violations in the g1 < 0 and g4 < 0 requirements.

The response to subproblems C and D should be in agreement. Note however, that some
approaches for addressing subproblem C are unable to find the extreme-case epistemic real-
izations sought for here.

Subproblem E: Robust Design (Optional)

In this section we consider the multidisciplinary system having the uncertain parameter
p ∈ R21 and the design variable d ∈ R14 as inputs; and the same g ∈ R8 used previously
as output. The objective of this subproblem is to identify design points d with improved
robustness/reliability characteristics. In particular, we want to find a design point d that:

E1) Minimizes the largest value of J1 for the uncertainty model used in task C4. Provide
the resulting value of d and the corresponding range of expected values. In regard to
the range of J1, is the resulting design better than dbaseline?

E2) Minimizes the largest value of J2 for the uncertainty model used in task C4. Provide
the resulting value of d and the corresponding range of failure probabilities. In regard
to the range of J2, is the resulting design better than dbaseline?

E3) Apply the sensitivity analysis of task B2 to the design point found in E1, and the
sensitivity analysis of task B3 to the design point found in E2. Compare the rankings
with those for the baseline design performed previously.

IV. The Physical System

The mathematical model S describes the dynamics of the Generic Transport Model
(GTM), a remotely operated twin-jet aircraft developed by NASA Langley Research Center.
Figure 1 shows the flight test article and its concept of operations. The aircraft is piloted from
a ground station via radio frequency links by using on-board cameras and synthetic vision
technology. The parameters in p are used to describe losses in control effectiveness and time
delays resulting from telemetry and communications as well as to model a spectrum of flying
conditions that extend beyond the normal flying envelope. The requirements in g are used
to describe the vehicles stability and performance characteristics in regard to pilot command
tracking and handling/riding qualities. The “black box” format of the formulation of this
challenge problem aims at making the problem amenable to the largest possible audience
without favoring or hindering respondents depending upon their particular field of expertise.
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Figure 1. NASA GTM test article and its concept of operations.

V. Software

The MATLAB R© scripts associated with all five subproblems can be downloaded from
http://uqtools.larc.nasa.gov/nda-uq-challenge-problem-2014/. These scripts require the Con-
trol System Toolbox to run. The m-files and datafiles required to study each of the subprob-
lems are as follows:

• Subproblem A: p to x1.m, x1samples1.mat and x1samples2.mat.

• Subproblems B, C, and D: p to x.m and x to g.m.

• Subproblem E: p to x.m and x and d to g.m.

The function montecarlo.m, which is not associated with any subproblem in particular,
carries out a Monte Carlo simulation of g. Details on the inputs and outputs of these scripts
can be found by looking at internal comments.
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